MAX0201

description: maximum representation of n in base of Fibonacci-type sequence beginning 2, 1, 3, 4, 7, ...

initial terms: 10, 1, 11, 110, 101, 111, 1011, 1110, 1101, 1111, 10110, 10101, 10111, 11011, 11110, 11101, 11111, 101011, 101110, 101101, 101111, 110110, 110101, 110111, 111011, 111110, 111101, 111111, 1010110, 1010101, 1010111, 1011011, 1011110, 1011101, 1011111, 1101011, 1101110, 1101101, 1101111, 1110110, 1110101, 1110111, 1111011, 1111110, 1111101, 1111111, 10101011, 10101110, 10101101, 10101111, 10110110, 10110101, 10110111, 10111011, 10111110, 10111101, 10111111, 11010110, 11010101, 11010111, 11011011, 11011110, 11011101, 11011111, 11101011, 11101110, 11101101, 11101111, 11110110, 11110101, 11110111, 11111011, 11111110, 11111101, 11111111, 101010110, 101010101, 101010111, 101011011, 101011110, 101011101, 101011111, 101101011, 101101110, 101101101, 101101111, 101110110, 101110101, 101110111, 101111011, 101111110, 101111101, 101111111, 110101011, 110101110, 110101101, 110101111, 110110110, 110110101, 110110111

offset: 1

link: Ron Knott, Using the Fibonacci Numbers to Represent Whole Numbers.