MIN0103

description: minimum representation of n in base of Fibonacci-type sequence beginning 1, 3, 4, 7, 11, ...

initial terms: 1, nil, 10, 100, 101, nil, 1000, 1001, nil, 1010, 10000, 10001, nil, 10010, 10100, 10101, nil, 100000, 100001, nil, 100010, 100100, 100101, nil, 101000, 101001, nil, 101010, 1000000, 1000001, nil, 1000010, 1000100, 1000101, nil, 1001000, 1001001, nil, 1001010, 1010000, 1010001, nil, 1010010, 1010100, 1010101, nil, 10000000, 10000001, nil, 10000010, 10000100, 10000101, nil, 10001000, 10001001, nil, 10001010, 10010000, 10010001, nil, 10010010, 10010100, 10010101, nil, 10100000, 10100001, nil, 10100010, 10100100, 10100101, nil, 10101000, 10101001, nil, 10101010, 100000000, 100000001, nil, 100000010, 100000100, 100000101, nil, 100001000, 100001001, nil, 100001010, 100010000, 100010001, nil, 100010010, 100010100, 100010101, nil, 100100000, 100100001, nil, 100100010, 100100100, 100100101, nil

offset: 1

link: Ron Knott, Using the Fibonacci Numbers to Represent Whole Numbers.