MIN0201

description: minimum representation of n in base of Fibonacci-type sequence beginning 2, 1, 3, 4, 7, ...

initial terms: 10, 1, 100, 1000, 1010, 1001, 10000, 10010, 10001, 10100, 100000, 100010, 100001, 100100, 101000, 101010, 101001, 1000000, 1000010, 1000001, 1000100, 1001000, 1001010, 1001001, 1010000, 1010010, 1010001, 1010100, 10000000, 10000010, 10000001, 10000100, 10001000, 10001010, 10001001, 10010000, 10010010, 10010001, 10010100, 10100000, 10100010, 10100001, 10100100, 10101000, 10101010, 10101001, 100000000, 100000010, 100000001, 100000100, 100001000, 100001010, 100001001, 100010000, 100010010, 100010001, 100010100, 100100000, 100100010, 100100001, 100100100, 100101000, 100101010, 100101001, 101000000, 101000010, 101000001, 101000100, 101001000, 101001010, 101001001, 101010000, 101010010, 101010001, 101010100, 1000000000, 1000000010, 1000000001, 1000000100, 1000001000, 1000001010, 1000001001, 1000010000, 1000010010, 1000010001, 1000010100, 1000100000, 1000100010, 1000100001, 1000100100, 1000101000, 1000101010, 1000101001, 1001000000, 1001000010, 1001000001, 1001000100, 1001001000, 1001001010, 1001001001

offset: 1

link: Ron Knott, Using the Fibonacci Numbers to Represent Whole Numbers.