MIN0301

description: minimum representation of n in base of Fibonacci-type sequence beginning 3, 1, 4, 5, 9, ...

initial terms: 10, nil, 1, 100, 1000, 1010, nil, 1001, 10000, 10010, nil, 10001, 10100, 100000, 100010, nil, 100001, 100100, 101000, 101010, nil, 101001, 1000000, 1000010, nil, 1000001, 1000100, 1001000, 1001010, nil, 1001001, 1010000, 1010010, nil, 1010001, 1010100, 10000000, 10000010, nil, 10000001, 10000100, 10001000, 10001010, nil, 10001001, 10010000, 10010010, nil, 10010001, 10010100, 10100000, 10100010, nil, 10100001, 10100100, 10101000, 10101010, nil, 10101001, 100000000, 100000010, nil, 100000001, 100000100, 100001000, 100001010, nil, 100001001, 100010000, 100010010, nil, 100010001, 100010100, 100100000, 100100010, nil, 100100001, 100100100, 100101000, 100101010, nil, 100101001, 101000000, 101000010, nil, 101000001, 101000100, 101001000, 101001010, nil, 101001001, 101010000, 101010010, nil, 101010001, 101010100, 1000000000, 1000000010, nil, 1000000001

offset: 1

link: Ron Knott, Using the Fibonacci Numbers to Represent Whole Numbers.